The function creates a PCA plot of the cluster abundances and saves the plot in results/abundance folder
Arguments
- object
A Seurat object
- cluster
A character string indicating the cluster column in the metadata of the Seurat object
- sample
A character string indicating the sample column in the metadata of the Seurat object
- condition
A character string indicating the condition column in the metadata of the Seurat object
- width
The width of the plot
- height
The height of the plot
- dir_output
directory to save the output plot (default: ".")
Examples
library(Seurat)
# Setup example data
set.seed(123)
pbmc_small$cluster <- sample(c("Cluster1", "Cluster2"), ncol(pbmc_small), replace = TRUE)
pbmc_small$sample <- sample(c("CSF_P01", "CSF_P02", "CSF_P03", "CSF_P04"),
ncol(pbmc_small), replace = TRUE)
# Create lookup table for conditions
lookup <- data.frame(
sample = c("CSF_P01", "CSF_P02", "CSF_P03", "CSF_P04"),
condition = c(rep("control", 2), rep("treatment", 2))
)
# Add condition information to metadata
pbmc_small@meta.data <- pbmc_small@meta.data |>
tibble::rownames_to_column("barcode") |>
dplyr::left_join(lookup, by = "sample") |>
tibble::column_to_rownames("barcode")
# Generate PCA plot
pcaSeurat(
object = pbmc_small,
cluster = "cluster",
sample = "sample",
condition = "condition",
width = 20,
height = 5
)
#> Joining with `by = join_by(cluster)`
unlink("pbmc_small_condition_cluster.pdf")